A Three-Layer Network Model of Direction Selective Circuits in the Optic Tectum
نویسندگان
چکیده
The circuit mechanisms that give rise to direction selectivity in the retina have been studied extensively but how direction selectivity is established in retinorecipient areas of the brain is less well understood. Using functional imaging in larval zebrafish we examine how the direction of motion is encoded by populations of neurons at three layers of the optic tectum; retinal ganglion cell axons (RGCs), a layer of superficial inhibitory interneurons (SINs), and periventricular neurons (PVNs), which constitute the majority of neurons in the tectum. We show that the representation of motion direction is transformed at each layer. At the level of RGCs and SINs the direction of motion is encoded by three direction-selective (DS) subtypes tuned to upward, downward, and caudal-to-rostral motion. However, the tuning of SINs is significantly narrower and this leads to a conspicuous gap in the representation of motion in the rostral-to-caudal direction at the level of SINs. Consistent with previous findings we demonstrate that, at the level of PVNs the direction of motion is encoded by four DS cell types which include an additional DS PVN cell type tuned to rostral-to-caudal motion. Strikingly, the tuning profile of this emergent cell type overlaps with the gap in the representation of rostral-to-caudal motion at the level of SINs. Using our functional imaging data we constructed a simple computational model that demonstrates how the emergent population of PVNs is generated by the interactions of cells at each layer of the tectal network. The model predicts that PVNs tuned to rostral-to-caudal motion can be generated via convergence of DS RGCs tuned to upward and downward motion and feedforward tuned inhibition via SINs which suppresses responses to non-preferred directions. Thus, by reshaping directional tuning that is inherited from the retina inhibitory inputs from SINs can generate a novel subtype of DS PVN and in so doing enhance the encoding of directional stimuli.
منابع مشابه
Direction selectivity in the visual system of the zebrafish larva
Neural circuits in the vertebrate retina extract the direction of object motion from visual scenes and convey this information to sensory brain areas, including the optic tectum. It is unclear how computational layers beyond the retina process directional inputs. Recent developmental and functional studies in the zebrafish larva, using minimally invasive optical imaging techniques, indicate tha...
متن کاملLayer-Specific Targeting of Direction-Selective Neurons in the Zebrafish Optic Tectum
Direction selectivity (DS) is an important neuronal property in the visual system, but how DS is generated beyond the retina remains controversial. Here, we report a close correspondence between the preferred direction (PD) and the morphology of DS cells in the optic tectum. Ca(2+) imaging in cells expressing the genetically encoded Ca(2+) indicator GCaMP3 and multiphoton-targeted patch-clamp r...
متن کاملEmergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum
The neural circuits in the optic tectum of Xenopus tadpoles are selectively responsive to looming visual stimuli that resemble objects approaching the animal at a collision trajectory. This selectivity is required for adaptive collision avoidance behavior in this species, but its underlying mechanisms are not known. In particular, it is still unclear how the balance between the recurrent sponta...
متن کاملEmergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity.
How local circuits within the brain process visual information has classically been addressed at the single neuron level. Such reductionist approaches, however, struggle to capture the full scope of functional properties associated with even "simple" brain nuclei. Using population functional calcium imaging, we aim to describe how local circuits within the zebrafish optic tectum process visual ...
متن کاملMonitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation
The zebrafish (Danio rerio) has become one of the major animal models for in vivo examination of sensory and neuronal computation. Similar to Xenopus tadpoles neural activity in the optic tectum, the major region controlling visually guided behavior, can be examined in zebrafish larvae by optical imaging. Prerequisites of these approaches are usually the transparency of larvae up to a certain a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017